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In this paper, vibrational motion of an elastic beam "xed on a moving cart and carrying
a moving mass is investigated. The equations of motion of the beam}mass}cart system are
derived and the coupled dynamic equations are solved by the unconstrained modal analysis.
In modal analysis, the exact normal mode solutions corresponding to the eigenfrequencies
for each position of the moving mass and the ratios of the weight of the beam}mass}cart
system are used. Proper transformation of time solutions between the normal modes for
a position and those for the next position of the moving mass is also considered. Numerical
simulations are carried out to obtain open-loop responses of the system in tracking
pre-designed paths of the moving mass. The simulation results show that the model predicts
the dynamic behavior of the beam}mass}cart system well. Experiments are carried out to
show the validity of the proposed analytical method.
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1. INTRODUCTION

In the past, a lot of research work has been reported on dynamic analysis of an elastic beam
with a moving force or mass. Initially, the problem of moving mass load on an elastic beam
is originated mainly from the applications in the "eld of transportation such as bridges,
railways and guide ways supporting a moving mass load.

As the historical review of the latter half of last century, Ayre et al. [1] studied the e!ect of
the ratio of the weight of the load to the weight of a simply supported beam for a constantly
moving mass load. They also obtained the exact solution for the resulting partial di!erential
equation by using the in"nite series. Kenney [2] found the possible velocities for the
propagation of free bending waves and studied their relation to the critical velocity of the
beam. He also presented an analytic solution and resonance diagrams for a constant
velocity of a rapidly moving load on an elastic foundation including the e!ect of viscous
damping. Steele [3] investigated the series solution of a "nite, simply supported
Euler}Bernoulli beam, with and without an elastic foundation. Nelson and Conover [4]
analyzed the dynamic stability of the lateral response of a simply supported Bernoulli}Euler
beam carrying a continuous series of equally spaced mass particles. Stanis\ icH and Hardin [5]
0022-460X/01/060131#27 $35.00/0 ( 2001 Academic Press
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developed a theory describing the response of a beam under an arbitrary number of
moving masses by using Fourier "nite sine transforms. Ting et al. [6] developed an
algorithm to solve the dynamic response of a "nite elastic beam supporting a constantly
moving mass.

Relevant to the research works after 1990s, Olsson [7] presented analytical and "nite
element solutions to the dynamic problem of a simply supported beam subjected to
a constant force moving at a constant speed. Mackertich [8] presented the response of
a beam to a constant moving mass utilizing the beam theory with corrections for the shear
deformation and rotary inertia. Lee [9] formulated the equation of motion for an Euler
beam acted upon by a concentrated mass moving at a constant speed by using the
Lagrangian approach and the assumed mode method. He also pointed out the possibility of
the mass separation from the beam during the course of the motion by monitoring the
contact forces between the mass and the beam. Lee [10] investigated the onset of the
separation between the moving mass and the beam while taking account of its e!ect in
calculating the interact force and the dynamic responses of the beams. Foda and
Abduljabbar [11] presented an exact and direct modelling technique based on the dynamic
Green function for the modelling beam structures subjected to a mass movement at
constant speed.

All the above works dealt with simply supported or cantilevered beams with
constantly moving masses or forces because the main purpose of those works was
the vibration analysis of bridges, railroads or guide ways on which the moving mass
load or force passes. However, when an elastic beam carrying a moving mass, is "xed
on a moving cart movement with the dynamical and if the total mass of the beam
and the moving mass cannot be neglected with respect to that of the cart, then the
motion of the beam-mass system a!ects that of the cart, and vice versa. Therefore, in this
case, the dynamic equations for the beam}mass}cart system should be considered as
a whole.

For example, when the reclaimers in automatic warehouses, high tower cranes, ladder
cars or overhead cranes move a heavy load, the vibrational motions due to the #exibility of
the main beam are unavoidable. Furthermore, when the load moves along the #exible
beam, the vibrational motions vary along the position of the load as that of the ratios of the
weight of the beam}mass}cart system [12]. Therefore, to analyze the total motion of the
beam}mass}cart system, the rigid-body motion of the cart as well as the vibrational motion
of the beam-mass system should be included in the analysis.

In this paper, the motion of a Bernoulli}Euler beam "xed on a moving cart and carrying
a moving mass along the beam is analyzed. The di!erences, both in modelling and analysis,
between the previous works and this one are: (1) The #exible beam considered here
is "xed on a moving cart. That is, it is not restrained at a large reference frame. Therefore,
in the mathematical modelling to derive the equations of motion, the total dynamics
of the beam-mass-cart system is considered. (2) The velocities of the moving mass and the
cart are not constants. (3) At every position of the moving mass, the exact normal mode
solutions corresponding to the eigenfrequencies of the beam}mass}cart system are used to
solve the equation of motion. (4) Proper transformations of the time solutions between
normal modes for a position and those for the next position of the moving mass are
adopted.

In the following section the equation of motion of the beam}mass}cart system is derived,
and the modal analysis is described in section 3. Numerical simulations for the
open-loop responses of the system in tracking the pre-designed path of the moving mass are
performed in section 4, some experimental results are introduced in section 5, followed by
conclusions.



Figure 1. The beam-mass-cart system considered.
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2. MATHEMATICAL MODELLING

Figure 1 shows a Bernoulli}Euler beam "xed on a moving cart, carrying a moving mass.
The base cart moves on the horizontal plane by the applied force f

1
(t). The moving mass

moves along the beam by the friction wheels driven by a motor.
To derive the equations of motion of the beam}mass}cart system, the following

assumptions are made: (1) The driving force for the cart, f
1
(t), is applied to i< direction. (2)

The local driving force for the moving mass, f
2
(t)"q(t)r, where q(t) is the torque by the

driving motor of the moving mass and r is the radius of the driving wheel of the moving
mass, is generated by the driving motor of the moving mass and makes the moving mass to
move to the tangential direction of the deformed beam. (3) The moving mass is not
separated from the beam. (4) There is no longitudinal de#ection of the beam and only the
lateral de#ection is possible. (5) The lateral de#ection of the beam is small compared with
the length of the beam. (6) The rotational e!ect of the moving mass and the beam with
respect to the local co-ordinate system is neglected. (7) All the motion occurs in X> plane,
and overturn motion of the system does not occur.

Under these assumptions, at any time t, if the magnitudes of tangential velocity and
acceleration of the moving mass are sR and sK , respectively, and the vertical position of the
moving mass is h (t), then the velocity of the moving mass with respect to the reference
co-ordinate system is represented as

r5 (t)"(xR #wR
h
#sR sin h)i<#sR cos hj< , (1)

where w
h
"w (h(t), t) is the de#ection of the #exible beam at y"h (t) and

tan h"
Lw(y, t)

Ly K
y/h (t)

. (2)

The mass per unit length of the #exible beam with a moving mass m at height h(t) along
the beam can be represented as

o"o
0
#md[y!h(t)], (3)
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where o
0

is the mass per unit length of the #exible beam without the moving mass, m is the
mass of the moving mass, and d[y!h (t)] is the delta-function satisfying

P
l

0

d[y!h (t)] dy"1. (4)

The kinetic energy, K(t), and the potential energy, P (t), of the cart and the #exible beam
with a moving mass located at h (t) are represented as

K (t)"K
r
(t)#P

l

0

K
e
(y, t) dy,

(5)

P (t)"P
r
(t)#P

l

0

P
e
(y, t) dy,

where K
r
(t) and P

r
(t) are the kinetic and the potential energy functions due to the motion of

the cart, and K
e
(y, t) and P

e
(y, t) are the kinetic and the potential energy density functionals

due to the #exibility of the beam, respectively, and are represented, utilizing equation (1), as
follows:

K
r
"1

2
MxR 2,

K
e
"1

2
[o

0
#md(y!h)](xR #wR )2#1

2
md(y!h)[sR 2#2sR sin h(xR #wR )], (6)

P
r
"0,

P
e
"1

2
EI (wA)2#md(y!h)gh,

where M is the mass of the cart, EI is the #exural rigidity of the beam, wR "Lw(y, t)/Lt and
wA"L2w (y, t)/Ly2 where w (y, t) is the de#ection of the beam at y.

The equations of motion can be obtained from Hamilton's principle as follows:

P
t
2

t
1
Gd¸r

(t)#P
l

0

d¸
e
(y, t) dy#d=

nc
(t)Hdt"0, (7)

where=
nc

is the work done by non-conservative forces, ¸
r
"K

r
!P

r
, and ¸

e
"K

e
!P

e
.

From Figure 1, it can be easily seen that

hQ "sR cos h. (8)

Thus, from equations (6) and (8), it can be seen that

¸
r
"1

2
MxR "¸

r
(xR ), (9)

and

¸
e
"1

2
[o

0
#md(y!h)](xR #wR )2#1

2
md(y!h)MhQ 2[1#(w@)2]#2hQ w@(xR #wR )N

!1
2
EI(wA)2!md(y!h)gh (10)

"¸
e
(xR , wR , w@, wA, hQ , h).

Since f
2
(t) is not a global force but a local force, the virtual work done by all the

nonservative forces, d=
nc

(t), is given by

d=
nc

(t)"f
1
(t)dx#f

2
(t)ds"f

1
(t)dx#

f
2
(t)

cos h
dh, (11)

where ds is the virtual displacement to s direction.
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The equations of motion and the boundary conditions are obtained as follows by
substituting equations (8)}(11) into equation (7), integrating the resulted equation by parts
and considering that the time t

1
and t

2
are arbitrary and that dx, dh and dw are arbitrary

and independent [13, 14] (see Appendix A).

MxK#P
l

0

M[o
0
#md(y!h)](xK#wK )#md(y!h)[hG w@#2hQ wR @#hQ wA]N dy"f

1
(t), (12)

EIw@@@@#[o
0
#md(y!h)](xK#wK )#md (y!h)[hG w@#2hQ wR @#hQ 2wA]"0, (13)

mMhG [1#(w@
h
)2]#(xK#wK

h
#hQ 2wA

h
#2hQ wR @

h
)w@

h
#gN"

f
2
(t)

cos h
(14)

and

w (0, t)"w@ (0, t)"wA (l, t)"w@@@ (l, t)"0. (15)

For small h, equation (14) can be rewritten as

mMhG#(xK#wK
h
#hQ 2wA

h
#2hQ wR @

h
)w@

h
#gN"f

2
(t). (16)

since sin h+tan h"w@
h
, 1#(w@

h
)2"sec2 h+1, and cos h+1 for small h.

Equation (12) contains x directional inertial force of the beam}mass}cart system, the
inertial forces of the beam and the mass due to the de#ection of the beam and those by
linear, Coriolis and centripetal accelerations of the moving mass. Equation (13) is exactly
the same as the results in references [6, 9, 10, 15, 16] except the x directional acceleration
term of the loaded beam. Equation (16) describes the motion of the moving mass by the
applied force, f

2
(t), and by the motion of the elastic beam. In this study the coupled

equations (12), (13) and (16) are solved simultaneously utilizing the unconstrained modal
analysis [17, 18] in the next section assuming that the vertical position of the moving mass
is pre-designed.

3. MODAL ANALYSIS

To solve the partial di!erential equations like equation (13), some investigators used
in#uence functions or Green functions [6, 10, 11], sine series [5, 7, 19] or assumed mode
functions [9]. In separating the de#ection of an elastic beam into time solutions and mode
solutions, many authors used the normal modes of the beam without the moving mass (see,
for example reference [9, 10]). However, the normal mode functions used in above works do
not represent the exact mode solutions because the natural frequencies and the
corresponding normal mode solutions of the beam are changed as the position of the
concentrated mass changes [12].

When one tries to solve the coupled equations of motion utilizing modal analysis, it is
impossible to separate the variables of the elastic de#ection of the beam by proper mode
functions and time functions because the vibration characteristics of a beam with a moving
mass changes along the position of the mass while the method of separation of variables is
focussed on the constant link lengths. Examples of this kind of system can be seen in
references [20, 21].

In this approach, to solve the coupled equations of motion using unconstrained modal
analysis, exact normal mode solutions corresponding to the frequency characteristics for
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the position of the moving mass and the weight ratios of the beam}mass}cart system are
used under the following assumptions.

Assumption. (1) If the magnitudes of the vertical velocity and acceleration of the moving
mass are small as hQ /l@u

fund
and hG /l@u2

fund
, where u

fund
is the fundamental frequency of the

beam}mass}cart system, then, at a certain time t, the moving mass is considered to be "xed
at hM during a small time interval Dt while h0 and hG are still valid. (2) The beam oscillates in
the same manner during this time interval.

In the above assumptions, hQ /l@u
fund

and hG /l@u2
fund

are reasonable in many industrial
applications because the speed of the moving mass is relatively small compared to the
vibration frequency of the beam. Under these assumptions, we can "nd the natural
frequencies and corresponding normal mode solutions for the system which has a "xed
mass at an arbitrary position hM o. Then, we solve the original equations of motion several
times utilizing these mode solutions during hM o)h(t)(hM o#Dh while updating hQ (t) and hG (t)
at every Dt. If h (t)*hM o#Dh"hM n, we "nd new natural frequencies and the corresponding
normal modes with new position of the moving mass, hM n. Then, we solve the original
equations of motion again utilizing these updated mode solutions and proper
transformation of time solution during hM n)h(t)(hM n#Dh.

The equations of motion for the beam}mass}cart system which has a "xed mass at h1 are
given as follows:

MxK#P
l

0

[o
0
#md(y!hM )](xK#wK ) dy"f

1
(t), (17)

EIw@@@@#[o
0
#md (y!hM )](xK#wK )"0, (18)

and the boundary conditions of equation (15).
By unconstrained modal analysis, the de#ection of the beam at y, w(y, t), and the position

of the cart, x (t), can be represented, respectively, as [17, 18]

w (y, t)"
=
+
i/1

/
i
(y)q

i
(t) (19)

and

x (t)"a (t)#
=
+
i/1

b
i
q
i
(t), (20)

where a (t) describes the motion of the center of mass of the total system without
perturbation, and

/
i
(y)"t

i
(y)!b

i
, (21)

where

t
i
(y)"CAi

(y)#
C

i
1!D

i

B
i
(y)Dt

i
(h1 )OF

i
(y)t

i
(h1 ) (22)

and

b
i
"!

m

M
t
i
(h1 )!

o
0

M P
l

0

t
i
(y) dy, (23)
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where A
i
(y), B

i
(y), C

i
, D

i
and t

i
(h1 ) for each eigenvalue k

i
are given in Appendix B. The

eigenvalues k
i
are the roots of the frequency equation [12]

1#cos m cosh m

#

r
1
4

[cos m cosh(m!2g)#cosMm!2g) cosh m#sin m sinh(m!2g)

!sin(m!2g) sinh m#2 cos m cosh m#4 cos g cosh g]

#

r
2
m

(sin m cosh m#cos m sinh m) (24)

#

r
3
m

4
[2 sin(m!g) cosh(m!g)!2 cos(m!g) sinh(m!g)

#2 cos g sinh g!2 sin g cosh g#cos(m!2g) sinh m

!sin m cosh(m!2g)#cos m sinh m!sin m cosh m]"0,

where r
1
"m/M, r

2
"m

b
/M, r

3
"m/m

b
, m"kl and g"kh1 . Using the normal mode

solution in equation (21) we solve equations (12), (13) and (16) during h1 )h (t)(h1 #Dh.
If equation (23) is satis"ed, the motion of the center of mass when h(t)"h1 is obtained as

M
t
aK (t)#mChG (t)

=
+
i/1

/@
i
(h1 )q

i
(t)#2h0 (t)

=
+
i/1

/@
i
(h1 )qR

i
(t)#h0 2(t)

=
+
i/1

/A
i
(h1 )q

i
(t)D"f

1
(t), (25)

where M
t
"M#m#m

b
is the total mass of the cart}beam}mass and m

b
"o

0
l is the mass

of the #exible beam.
On the other hand, t

i
(y) in equations (21) and (22) satis"es [12]

EIt@@@@
i

(y)!u2
i
oN t

i
(y)"0, (26)

and

P
l

0

o6 /
i
(y)t

j
(y)"d

ij
, (27)

where

u2
i
"

EIk4
i

o
0

, (28)

o6 "o
0
#md(y!h1 ) and d

ij
is the Kronecker delta. Substituting equations (19), (20) and (26)

into equation (13), multiplying both sides of the resulted equation by /
j
(y), integrating over

the problem domain and applying the orthogonality condition as equation (27), one obtains

qK
i
(t)#u2

i
q
i
(t)#mChG (t)

=
+
j/1

P
l

0

d (y!h1 )/@
j
(y)/

i
(y)q

j
(t) dy

#2h0 (t)
=
+
j/1

P
l

0

d (y!h1 )/@
j
(y)/

i
(y)qR

j
(t) dy (29)

#h0 2 (t)
=
+
j/1

P
l

0

d (y!h1 )/A
j
(y)/

i
(y)qR

j
(t) dyD"aK (t)M

t
b
i
.
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Substitution of equation (25) into equation (29) gives

qK
i
(t)#u2

i
q
i
(t)#mt

i
(h1 ) ChG (t)

=
+
j/1

/@
j
(h1 )q

j
(t)#2h0 (t)

=
+
j/1

/@
j
(h1 )qR

j
(t)

(30)

#h0 2(t)
=
+
j/1

/A
j
(h1 )q

j
(t)D"b

i
f
i
(t).

Equation (30) is the one to "nd the time solution for the moving mass located at
h1 )h (t)(h1 #Dh. If the position of the mass is changed su$ciently large enough that it
must be updated, then the natural frequencies and the corresponding normal modes for the
position h1 are no longer valid. In this case, we should "nd new natural frequencies and the
corresponding normal modes with updated position of the moving mass. Then we solve the
original equations of motion and the time solutions, equation (30), again using the updated
mode solutions.

However, in calculating the time solutions with new mode solutions, there must be proper
transformations between old time solutions and new ones. If the position of the moving
mass is changed from h1 o to h1 n#Dh at any time instant t, then the de#ection of the beam at
this time can be represented by using either h1 o or h1 n as follows:

w (y, t)"
=
+
i/1

qo
i
(t)/o

i
(y)"

=
+
j/1

qn
j
(t)/n

j
(y), (31)

where /o
i
(y) and /n

j
(y) are the normal mode solutions corresponding to the eigenfrequencies

for the position h1 o and h1 n respectively. The error between the two expressions in equation
(31) will be checked in the next section.

Multiplying both sides of equation (31) by o6 ntn
j
(y), integrating over the problem domain

and applying the orthogonality condition, equation (27), one can obtain the transformation
between old time solutions and new ones as follows:

qn
j
(t)"

=
+
i/1

qo
i
(t) P

l

0

o6 n (y)/o
i
(y)tn

j
(y) dy, (32)

where o6 n"o
0
#md(y!h1 n). Equation (32) is used to transform the time solutions when the

natural frequencies and the corresponding mode solutions for h1
o
are changed to those for h1 n.

For numerical simulations, ,nite-dimensional approximated model for a "nite number of
mode solutions are considered from the previous development by taking the "rst
o expansion in equations (19) and (20) as follows:

w (y, t)"
p
+
i/1

/
i
(y)q

i
(t), (33)

and

x (t)"a (t)#
p
+
i/1

b
i
q
i
(t), (34)

respectively, and the results are shown in the next section.

4. NUMERICAL EXAMPLES

4.1. LINEAR MOTION OF MOVING MASS

Numerical simulations are carried out to obtain open-loop responses of the
beam}mass}cart system when the moving mass follows pre-designed paths by several ways.



Figure 2. The acceleration, velocity and position pro"les of the moving mass for upward motion: (a)
acceleration and velocity pro"les of the moving mass; (b) position pro"le of the moving mass.
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At "rst, the forcing function f
1
(t) given by

f
1
(t)"G

20N

!20N

N

when 0(t)0)2,

when 1)0(t)1)2,

otherwise

(35)

is applied to the cart while f
2
(t) is pre-designed to generate the trajectory of the moving mass

as given in Figure 2.
Figure 3 shows the position of the cart, x(t), the global position of the moving

mass, x
h
(t), the global position of the tip of the elastic beam, x

T
(t), the local de#ec-

tion of the beam at which the moving mass is located, w
h
(t), and the local de#ection

of the beam at the tip of the beam, w
T
(t), respectively, where x

h
(t)"x (t)#w

h
(t) and

x
T
(t)"x (t)#w

T
(t), when m"2kg, Dh"l/200, p"3 and the system parameters given in

Table 1 are used.
As seen in Figure 3, the de#ection at y"h, w

h
(t), becomes large as the moving

mass moves from h"0)2 to 0)8 while the tip de#ection, w
T
(t), at steady state is

bounded within$0)031(m). It can be also known that the motion of the vibrating beam
and the moving mass a!ects that of the cart, and vice versa. Furthermore, the natural
frequency of the beam gets low as the position of the moving mass becomes high. The
change of the fundamental frequency during this motion by equation (28) is from 2)106 Hz
(13)23 rad/s) to 0)914 Hz (5)74 rad/s), and the conditions that h0 /l@u

fund
and hG /l@u2

fund
in

the assumption are su$ciently satis"ed since h0
max

"0)1 m/s, hG
max

"0)1 m/s2 and h"1 m in
this simulation.

In the numerical simulations, Dt is given as Dt"2n/100u
fund

, and, thus Dt varies from
4)74]10~3 to 10)95]10~3 s while the moving mass moves from h"0)2 to h"0)8 m. If the
moving mass moves with the maximum velocity, the moving mass can move from minimum
0)474 mm to maximum 1)095 mm during Dt. Therefore, the assumption that the moving
mass is "xed at a certain position during Dt is valid. In this numerical simulation, the
natural frequencies are updated at every Dh"l/200"5 mm. In which case, for example,
the fundamental frequency at h"0)8 and 0)795 m are 0)914 and 0)922 Hz respectively.
Thus, the di!erence of fundamental frequencies between h"0)8 and 0)795 m is negligible.
Furthermore, when the moving mass moves from h"0)795 to 0)8 m with the maximum
velocity, it takes 0)05 s"5)422Dt. Therefore, the assumption that the beam oscillates in the
same manner during Dt is valid.



TABLE 1

System parameters

Parameters Value

Mass of cart, M 10)0 kg
Length of elastic beam, l 1)0 m
Mass per unit length of elastic beam, o

0
0)788 kg/m

Young's modulus of elastic beam, E 2)07]1011N/m2
Area moment of inertia of elastic beam, I 5)208]10~11 m4

Figure 3. The open-loop response of the beam-mass-cart system by the forcing function (35) and the trajectory
of moving mass in Figure 2 when m"2 kg: (*), x(t); (} }), x

h
(t); (- - -), x

T
(t); () ) )), w

h
; (} )} )), w

T
(t).
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Figure 4 shows the drastic change of the "rst three roots of the frequency equation (24)
and the selected corresponding mode shapes with respect to the change of the position of
the moving mass, and that is the reason why the normal mode solutions should be updated
at every position of the moving mass.

Figure 5 shows the open-loop response of the beam}mass}cart system when the same
parameters and conditions in the previous simulations are used except that m"5 kg. The
tip de#ection, w

T
(t), at steady state is bounded within $0)05(m). The fundamental

frequency of the system by equations (28) and (24) is changed from 2)093 to 0)675 Hz as the
moving mass moves from 0)2 to 0)8 m.

The vibrational motion of the beam}mass}cart system when the moving mass moves
down from high position to lower one was investigated. For this purpose, the acceleration,
velocity and position pro"le of the moving mass was pre-designed as seen in Figure 6.

Figures 7 and 8 show the downward open-loop responses of the beam}mass}cart
system when m"2 and 5 kg respectively. As seen in both "gures, the frequency of the
system vibration becomes higher and w

h
becomes smaller as the moving mass goes down.

Both results show that the tip de#ections are bounded within $0)042(m) and $0.173(m)
when m"2 and 5 kg, respectively, while w

h
becomes smaller as the moving mass goes

downward.



Figure 4. The "rst three roots of the frequency equation (24) and the selected corresponding mode shapes with
respect to the change of the position of the moving mass when m"2 kg: (a) the eigenfrequencies; (b) the "rst mode
shapes; (c) the second mode shapes; (d) the third mode shapes.

Figure 5. The open-loop responses of the beam-mass-cart system by the forcing function (35) and the trajectory
of moving mass in Figure 2 when m"5 kg: (*), x(t); (} }), x

h
(t); (- - -), x

T
(t); () ) )), w

h
; (} )})), w

T
(t).
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4.2. CIRCULAR MOTION OF MOVING MASS

Next numerical simulation are carried out to obtain the open loop responses of the
system in tracking the pre-designed path of the moving mass. The task is to draw a circle

(X!x
c
)2#(>!y

c
)2"R2 (36)



Figure 6. The acceleration, velocity and position pro"les of the moving mass for the downward motion:
(a) accleration and velocity pro"les of the moving mass; (b) position pro"le of the moving mass.

Figure 7. The open-loop responses of the beam-mass-cart system by the forcing function (35) and the trajectory
of moving mass in Figure 6 when m"2 kg: (*), x (t); (} }), x

h
(t); (} } }), x

T
(t); () ) )), w

h
; (} ) } )), w

T
(t).
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in X> plane with the mass. Since the purpose of this study is the investigation of the
vibrational motion of the elastic beam, the desired path is planned without considering the
#exibility of elastic beam. The force to be applied to the cart, f

1
(t), is generated as

f
1
(t)"M

t
[aK

d
#K

v
(aR

d
!aR )#K

p
(a

d
!a)] (37)

to follow the desired trajectory of the center of mass of the beam}mass}cart system as

a
d
(t)"x

c
!R sin(Xt), (38)

because a(t)"x(t) in the case of rigid beam. Further, it is assumed that the force to be
applied to the moving mass, f

2
(t), is made to generate the desired vertical trajectory of the

moving mass to follow

h
d
(t)"y

c
$R cos(Xt). (39)



Figure 8. The open-loop responses of the beam-mass-cart system by the forcing function (35) and the trajectory
of moving mass in Figure 6 when m"5 kg: (*), x (t); (} }), x

h
(t); (} } }), x

T
(t); () ) )), w

h
; (} ) } )), w

T
(t).

Figure 9. The trajectory of the moving mass and time response of the beam-mass-cart system when m"2 kg
and X"2n/10. In (a), (*), desired trajectory of moving mass; (} }) simulated trajectory of moving mass, in (b), (*),
a
d
(t); (} }), x (t); (- - -), w

h
; () ) )), w

T
(t). (a) trajectory; (b) time response.
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Figure 9 shows the simulated trajectory of the moving mass and the tip of the elastic
beam with respect to the desired one in (a) and x (t), w

h
and w

T
(t) in (b) when m"2 kg,

(x
c
, y

c
)"(0, 0)5)(m), R"0)5 m, K

p
"15, K

v
"15, Dh"l/200, p"3, X"2n/10 and the

system parameters given in Table 1 are used. The moving mass moves in counter-clockwise
direction from the start point (X, > )"(0, 1).

Figure 10 shows the result under the same conditions with the previous simulation when
m"5 kg. Figure 11 shows the simulated result when the moving mass moves in clockwise
direction from the start point (X, >)"(0, 0) and all the conditions are identical with those
used in the previous simulations.

As seen in the results, the e!ect of the vibration of the beam}mass system to that of the
base cart becomes greater as the moving mass becomes heavier. Furthermore, w

h
becomes

smaller as the moving mass goes down from the upper position to lower one while the



Figure 10. The trajectory of the moving mass and time response of the beam-mass-cart system when m"5 kg
and X"2n/10. In (a), (*), desired trajectory of moving mass; (} }), simulated trajectory of moving mass; in (b), (*),
a
d
(t); (} }), x (t); (- - -), w

h
; () ) )), w

T
(t). (a) trajectory; (b) time response.

Figure 11. The trajectory of the moving mass and time response of the beam-mass-cart system when m"5 kg
and X"2n/10. In (a), (*), desired trajectory of moving mass; (} }), simulated trajectory of moving mass; in (b), (*),
a
d
(t), (} }), x (t); (- - -), w

h
; () ) )), w

T
(t). (a) trajectory; (b) time response.
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vibration becomes fast. On the contrary, when the moving mass goes up, w
h
becomes larger

while the vibration becomes slow. The results show the physical phenomena well.
Comparing the result in Figures 10 and 11, vibration of the beam}mass}cart system
becomes smaller when the moving mass starts at low position than it starts at high position.

It is natural, in numerical calculation, that the simulated results describe the real plant
closer as the step size of the change of the position of the moving mass, Dh, and the size of
time step for numerical integration, Dt, become "ner, and as more number of modes for
expanding the de#ection, p in equation (33), is considered. In these simulations, the size of
time step for numerical integration was chosen as Dt"2n/100u

p
, where u

p
is the natural

frequency of pth mode. This scheme can guarantee the accuracy of numerical integration
though the natural frequencies of the beam}mass}cart system vary along the position of the
moving mass.

The step size of the change of the position of the moving mass, Dh, was chosen as l/200.
The di!erence of w

h
at steady state in Figure 5 between Dh"l/200 and l/500 is under 8%.



Figure 12. The error between the two expansions of de#ection in equation (33) for the "rst change of the step of
the position of the moving mass when Dh"l/200 (in the simulation for Figure 3): (*), p"1; (} }), p"2; (- - -),
p"3; () ) )), p"4; (} ) } )), p"5.
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However, as Dh becomes "ner w
h
at steady state is bounded in this error range. For example,

the di!erence of w
h
at steady state in Figure 5 between Dh"l/200 and l/1000 is 4)5% and

those between Dh"l/200 and l/5000 is 2)3%.
The number of modes, p, in expanding the de#ection of the beam and the position of the

cart as in equations (33) and (34), respectively, also e!ects the accuracy of the result. The
number of modes, p, considered for the simulations in this paper is 3. The di!erence of the
simulated responses with the number of modes over 3 is negligible in mechanical sense. As
an example, the simulation for Figure 3 was considered and Figure 12 shows the error
between the two expansions of de#ection in equation (33) for the "rst change of the step of
the position of the moving mass when Dh"l/200. As seen in the "gure, the error is
su$ciently small with p"3.

The analytical method introduced in this paper gives satisfactory results in a mechanical
sense with minimum number of modes in expanding the de#ection of the elastic beam
because the exact normal mode solutions corresponding to the eigenfrequencies of the
beam}mass}cart system with respect to the position of the moving mass and the weight
ratio of the system are used.

5. EXPERIMENTAL VERIFICATION

5.1. EXPERIMENTAL SET-UP

Figure 13 shows the experimental set-up. As seen in Figure 13(a) and 13(b), a thin
#exible beam carrying a concentrated or a moving mass is clamped on the moving
carriage of a linear motor by a beam "xture. The linear motor used as the moving
base is LEB-S-2-S made by ANORAD Co. Figure 13(c) shows the moving mass. The
moving mass moves along the #exible beam by two pairs of rubber-coated wheels driven by
an AC servo motor and a reduction gear. Table 2 shows the speci"cation of the
experimental set-up.



Figure 13. The experimental set-up: (a) photograph of the experimental set-up; (b) Schematics of the
experimental setup; (c) photograph of the moving mass.

TABLE 2

Speci,cations of the experimental set-up

Moving base
Continuous force of linear motor 103 N
Maximum moving velocity 2)0 m/s
Maximum moving distance 0)5 m
Resolution of linear encoder 2 km
Mass of the moving carriage 5)04 kg
Mass of the beam "xture 4)61 kg

Beam 1
Dimension (¸]=]¹) 1000]50]3)12 mm
Mass per unit length, o

0
1)2168 kg/m

Area moment of inertia, I 1)265]10~10 m4
Young's modulus, E 2)07]1011 N/m

Beam 2
Dimension (¸]=]¹) 1000]49)85]3)8 mm
Mass per unit length, o

0
1)4776 kg/m

Area moment of inertia, I 2)279]10~10 m4
Young's modulus, E 2)07]1011 N/m

Moving mass
Rated power of AC servo motor 100 W
Rated torque of AC servo motor 0)32 Nm
Rated speed of AC servo motor 3000 rev/min
Gear reduction rate 10:1
Total weight 5)4 kg
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Figure 14. Open-loop responses for the linear motion of the moving mass (up-to-down motion): (a) trajectory of
the moving mass in X> plane (up-to-down); (b) cart position; (c) vertical trajectory of the moving mass; (d) strain
signal.
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5.2. LINEAR MOTION OF THE MOVING MASS

The open-loop responses of the beam}mass}cart system with a linearly moving mass
are veri"ed by experiments. For these experiments, the base cart on which the beam 1 in
Table 2 carrying the moving mass is mounted is excited by the driving force

f
1
(t)"G

30N

0N

when 0(t)0)2 s,

when t'0)2 s.
(40)

The moving mass was controlled by the robust internal-loop compensator (RIC) [22] to
robustly follow the given trajectories even under the disturbances such as friction and the
dynamics due to the vibration of the beam.

Figure 14 shows the open-loop response of the beam}mass}cart system when the moving
mass follows the trajectory in "gure 14(c) along the #exible beam. Figure 14(a) is the global
trajectory of the moving mass in X> plane. The trajectory was obtained by taking the
picture of an LED attached to the moving mass after the moving base is translated by the
applied force. The upper semi-arc line is caused by the other LED attached to the top end of



Figure 15. Simulation results for the linear motion of the moving mass (up-to-down): (*) x (t); (} }), w
h
; (- - -), w

T
(t).

Figure 16. Open-loop responses for the linear motion of the moving mass (up-to-down motion): (a) trajectory of
the moving mass in X> plane (down-to-up); (b) cart position; (c) vertical trajectory of the moving mass; (d) strain
signal.
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the beam. Figure 14(b) is the position of the cart measured by the linear encoder of the linear
motor. As seen in Figure 14(b), the cart stops at a position without the deceleration
command due to the friction between the moving carriage and the LM-guide of the linear
motor. Figure 14(c) is the time trajectory of the moving mass measured by the encoder of the
servo motor of the moving mass. The maximum error between the reference trajectory and
the measured one in this experiment is less than 0)7 mm in spite of the large friction between
the #exible beam and the moving mass. Figure 14(d) is the strain signal measured by strain
guages attached to the root of the #exible beam.

Figure 15 shows the simulation results for the same conditions with the previous
experiment. In this simulation the friction force between the moving carriage and the
LM-guide of the linear motor is modelled as

F
fric

"G
0

f
st
) sgn(xR )

f
c
)sgn(xR )#f

v
xR

when xR "0,

when 0)DxR D)e,

when DxR D'e,

(41)

where f
st

and f
c
are the static and the Coulomb friction forces, and f

v
is the viscous friction

coe$cient, respectively, and e is a positive in"nitesimal value. The friction coe$cients used
in these simulation are f

st
"5)0, f

c
"3)5, and f

v
"2)35. Considering that the friction

coe$cients have some error and that the natural frequencies of the system di!er a little from
those by equations (28) and (24) due to the friction force [12], the simulation results match
remarkably well with that of experiments, especially for the cart positions and the tip
de#ections.

Figure 16 shows the open-loop response of the beam}mass}cart system when the moving
mass follows the trajectory in Figure 16(c) along the #exible beam. Figure 16(a) is the global
trajectory of the moving mass in X> plane. Figure 16(b) is the position of the cart measured
by the linear encoder of the linear motor Figure 16(c) is the time trajectory of the moving
mass measured by the encoder of the servo motor of the moving mass. The maximum error
between the reference trajectory and the measured one in this experiment is less than
0)5 mm. (d) is the strain signal measured by strain gauges attached to the root of the #exible
beam.
Figure 17. Simulation results for the linear motion of the moving mass (down-to-up): (*) x(t); (} }), w
h
(t); (} } }),

w
T
(t).
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Figure 17 shows the simulation results for the same conditions with the previous
experiment. Under the consideration that there are some errors in the friction coe$cients, and
that the beam has damping e!ects not considered in the simulation, the simulation results
show well the dynamic behavior obtained from the experiment.

5.3. CIRCULAR MOTION OF THE MOVING MASS

The responses of the beam}mass}cart system for the circular motion of the moving mass in
X> plane are veri"ed by experiments. For these experiments, the base cart on which the beam
Figure 18. Experimental results for the circular motion of the moving mass when R"0)2, X"2n/5, K
p
"250,

and K
v
"7)5: (a) position of the base cart, x(t); (b) position of the moving mass, h(t); (c) the error between h

d
(t) and

h(t); (d) strain signal; (e) the trajectory of the moving mass in X> plane.



Figure 19. The trajectory of the moving mass and time response of the beam-mass-cart system when X"2n/5,
K

p
"250 and K

v
"7)5. In (a), (*), desired trajectory of moving mass; (} }), simulated trajectory of moving mass; in

(b), (*), x(t); (} }), w
h
; (- - -), w

T
(t): (a) trajectory; (b) time response.
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2 in Table 2 carrying the moving mass is mounted is controlled by the controller

f
1
(t)"M

t
[xK

d
#K

v
(xR

d
!xR )#K

p
(x

d
!x)]. (42)

The desired trajectory of the base cart is designed as

x
d
(t)"x

c
!R sinXt, (43)

and it is assumed that the RIC makes the moving mass to follow the trajectory

h
d
(t)"y

c
#R cosXt. (44)

Figure 18 shows the experimental results when the moving mass follows the circular path
given by equations (43) and (44) with radius R"0)2 and X"2n/5. The moving mass starts
from (x

c
, y

c
)"(0)0, 0)9) to CCW direction after 1s, and the feedback gains K

p
and K

v
are 250

and 7)5 respectively. Figure 18(a) is the time response of the moving base, x(t), measured by
the linear encoder of the linear motor. Figure 18(b) is the time response of the moving mass,
h(t). Figure 18(c) is the position error between h

d
(t) and h(t). The position error is su$ciently

small due to the RIC. Figure 18(d) is the strain signal measured by the strain gauges attached
to the root of the elastic beam. Figure 18(e) is the global trajectory of the moving mass
obtained by taking picture of a LED attached to the moving mass.

Figure 19 is the simulation results using the analytical method developed in this study for
the same conditions with the previous experiment. It is di$cult to compare the experimental
results with that of simulation quantitatively because it is di$cult to measure the global
position of the moving mass. However, it can be known that the simulation results by the
proposed analytical method describes the experimental results very well except for some
di!erence in natural frequencies of the system.

Figure 20 shows the experimental results when the same conditions with the previous
experiment are used except that K

p
"140)6 and K

v
"5)6. Smaller feedback gains produce

less distorted trajectory of the moving mass than the previous one. Figure 21 is the simulation
results for the same conditions with the previous experiment. The simulation results match
well with the experimental ones.



Figure 20. Experimental results for the circular motion of the moving mass when R"0)2, X"2n/5,
K

p
"140)6, and K

v
"5)6; (a) position of the base cart; (b) position of the moving mass; (c) the error between h

d
(t)

and h(t); (d) strain signal; (e) the trajectory of the moving mass in X> plane.
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6. CONCLUDING REMARKS

In this study, the equation of motion of an elastic beam "xed on a moving cart
and carrying a moving mass was derived and the coupled dynamic equations were
solved by unconstrained modal analysis. An analytical method utilizing the exact
normal mode solutions corresponding to the eigenfrequencies for the position of the
moving mass and the ratios of the weight of the beam}mass}cart system was proposed.
The proper transformation of the time solutions between the normal modes for
a position and those for the next position of the moving mass were also adopted in the
analysis.



Figure 21. The trajectory of the moving mass and time response of the beam-mass-cart system when X"2n/5,
K

p
"140)6, and K

v
"5)6; (a), (*), desired trajectory of moving mass; (} }), simulated trajectory of moving mass; in

(b), (*), x(t); (} }), w
h
; (- - -), w

T
(t); (a) trajectory; (b) time response.
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Numerical simulations were carried out to verify the validity of the proposed method, and
the open-loop responses of the system in tracking the pre-designed path of the moving mass
were obtained. The simulation results show the dynamic behavior of the beam}mass}cart
system well and this method can be used as a motion simulator which describes the
vibrational motion of a moving elastic beam with a moving mass. Those analytical results
were compared with the experimental ones. The experimental results show the validity of the
analytical method proposed in this study.

For further study, active vibration suppression controller using the dynamics of the system
would be designed.
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APPENDIX A

Substituting equation (8), variations of equations (9)}(11) into equation (7), one obtains

P
t
2

t
1
G
L¸

r
LxR

dxR #P
l

0
A
L¸

e
LxR

dxR #
L¸

e
LwR

dwR #
L¸

e
Lw@

dw@#
L¸

e
LwA

dwA#
L¸

e
Lh0

h0 #
L¸

e
Lh

dhBdy

#f
1
(t)dx#

f
2
(t)

cosh
dhHdt"0.

(A.1)

Integrating equation (A.1) by parts and considering that t
1

and t
2

are arbitrary, the following
equations are obtained:

d

dt A
L¸

r
LxR B#P

l

0

d

dt A
L¸

e
LxR Bdy!f

1
(t)"0, (A.2)

P
l

0
C

d

dtA
L¸

e
LwR B#

L
Ly A

L¸
e

Lw@B!
L2
Ly2 A

L¸
e

LwABD dwdy"0, (A.3)

P
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0
C

d

dt A
L¸

e
Lh0 B!

L¸
e

Lh
!d(y!h)

f
2
(t)

cos hD dhdy"0, (A.4)
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L¸
e

LwA
dw@ K

y/l

y/0

"0, (A.5)

!

L¸
e

Lw@
dw K

y/1

y/0

#

L
Ly A

L¸
e

LwABdw K
y/1

y/0

"0. (A.6)

Substitution of equations (9) and (10) into equations (A.2)}(A.6) gives the equations of
motion and the boundary conditions in equations (12)}(15). In deriving equation (12), the
second term on the left-hand side of equation (A.2) is obtained as

P
l

0

d

dt A
L¸

e
LxR Bdy"P

l

0

d

dt
M[o

0
#md(y!h)](xR #wR )#md(y!h)hQ w@Ndy

"P
l

0

M[o
0
#md(y!h)](xK#wK )#md(y!h)(hG w@#h0 wR @)

!mhQ d@(y!h)(xR #wR #hQ w@)Ndy (A.7)

"P
l

0

M[o
0
#md(y!h)](xK#wK )#md(y!h)[hG w@#2h0 wR @#h0 2wA]Ndy,

where the relations

d

dt
d(y!h)"

dh

dt

d

dh
d(y!h)"!h0 d(y!h) (A.8)

and

P
l

0

d@ (y!h) f (y) dy"!P
l

0

d(y!h) f @(y) dy (A.9)

are used.
In deriving equation (13), one obtains the "rst term on the left-hand side in equation (A.3) as

P
l

0

d

dt A
L¸

e
LwR Bdy

"P
l

0

d

dt
M[o

0
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and for the second term as
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To derive the third equations of motion, equation (14), the "rst term on the right-hand side in
equation (A.4) becomes
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and the second term becomes
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APPENDIX B

In equation (22),
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where cOcos, sOsin, chOcosh and shOsinh.
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